深圳海洲测控智能设备有限公司
设为首页 | 收藏本站
     公司主营:非标自动化设备、激光打标机、切割机、视觉检测、传感器、机械手、直线电机、工厂自动化设备、电气机电配件
15920023986
咨询服务热线
文章列表
机器人扭转电缆机器人电缆PVC用于扭转耐磨耐油电缆工业机器人动态弯曲进口工业电缆 缆普Lapp和柔Helu易格斯IGUS BICC电缆住友电缆古河电工
无卤电缆适用火灾危险性机场火车站LAPP无卤电缆耐油性柔韧性屏蔽缆普Lapp和柔Helu易格斯IGUSBICC电缆住友电缆古河电工进口工业电缆
缆普LAPP动力和控制电缆供电和信号传输线电缆,电力和控制电ÖLFLEX品牌耐油性柔韧性电力电缆机器人电缆太阳能风能特定用途多芯电缆
文章围绕SMD载带芯片视觉检测机的节能效果展开,阐述了其节能设计原理,通过实际案例说明节能效果对企业成本和环境的影响,并展望了未来的发展趋势。
文章围绕SMD载带芯片字符视觉检测机的售后服务展开,阐述了其重要性,介绍了常见服务内容和流程,分析了售后团队素质要求和服务质量评估方式,最后提出了提升售后服务质量的策略。
文章探讨了SMD载带芯片视觉检测机的创新技术,涵盖视觉检测基础、定位、分割、匹配、算法优化等方面,通过实际案例展现其效果,最后对行业前景和发展趋势进行了展望。
文章围绕SMD载带芯片字符视觉检测机与人工检测展开对比分析,阐述了两者的检测原理,从效率、精度、成本、可靠性等方面比较了各自的特点,同时分析了它们的发展趋势,得出视觉检测机优势明显,企业应合理选择检测方式的结论。
文章围绕SMD载带芯片视觉检测机的性能提升展开,介绍了检测系统硬件优化、算法优化、机械结构与传动优化、软件系统优化与升级以及维护与校准等方面的方法,以提高检测机的整体性能,满足电子制造行业需求。
文章围绕电子烟嘴过滤芯视觉检测筛选机的性能参数展开,分别阐述了检测精度、速度、图像采集、光源、筛选准确率和稳定性等参数的具体内容和重要性,帮助企业了解和选择合适的设备。
文章阐述了彩色线束线序颜色检测的重要性,详细介绍了常用颜色空间选择、视觉识别线序检测方法步骤、基于机器视觉的检测方法、线束顺序检测设备特点及线束彩色线序自动检测仪的优势和应用范围,为彩色线束线序颜色检测提供全面解决方案。
文章围绕SMD载带芯片字符视觉检测机故障排除展开,阐述了检测机常见故障类型,包括光学系统、机械传动、电气控制和软件算法故障;介绍了故障排查流程,从初步检查到详细排查再到故障定位;给出了具体故障解决措施;强调了故障预防与维护的重要性,包括定期保养、人员培训和环境管理;最后通过案例分析说明如何解决实际故障,以提高检测机的可靠性和稳定性。
电子烟气密性测试机,气密性测试自动化设备吸烟测试治具电子雾化器产品抽烟测试,PTF气密性自动测试动盘自动上料可自动导通测试气密性测试
文章详细阐述了电子烟嘴过滤芯视觉检测筛选机的维护保养工作,包括日常清洁保养、润滑保养、电气系统和光学系统维护、故障排查与维修以及操作人员培训等方面,强调了维护保养对设备稳定运行和企业生产的重要性。
文章围绕线束线序颜色检测机的适用范围展开,分别介绍了其在汽车、航空航天、医疗设备、电子电器、工业自动化等领域的应用,说明检测机可确保线束线序颜色正确,避免产品故障与安全隐患,提升产品质量与可靠性,且未来适用范围有望进一步扩大。
文章详细阐述了IC芯片字符及引脚视觉检测的相关知识,包括检测概述、引脚识别方法。分析了常见故障,如字符识别错误、引脚检测不准确和检测系统故障,并给出了相应的排除方法和预防措施,以提高检测质量和芯片性能。
本文围绕SMD载带芯片视觉检测机的市场前景展开讨论。首先介绍了其市场现状,包括市场规模、竞争格局和需求情况。接着分析了驱动市场发展的因素,如半导体产业增长、技术创新、质量控制要求提高和政策支持。然后指出了市场面临的挑战,如技术门槛高、竞争激烈、客户需求多样化和国际贸易摩擦。最后阐述了市场的未来发展趋势,包括高精度和高速度化、智能化和自动化、多功能集成化和国产化替代加速。
文章围绕适合电子烟嘴过滤芯视觉检测筛选机的场景展开分析。首先介绍了在大规模生产制造场景中,该设备可集成到自动化生产线,保障产品质量一致性;接着阐述在高精度质量控制场景下对过滤效果和材料质量的检测作用;然后说明在研发与新产品测试场景能助力性能验证和材料工艺优化;还提到品控抽检场景中的定期抽检和市场反馈检测;最后指出在出口与高端市场场景可满足国际标准、提升品牌形象,强调了其在电子烟生产各场景的重要价值
文章对线束线序颜色检测机精度进行了全面分析。首先阐述检测机的工作原理,包括视觉识别和传感器检测原理;接着分析影响精度的硬件设备质量、软件算法水平和环境因素;对比了国外知名品牌和国内优秀品牌检测机的精度及差异原因;通过汽车和电子设备制造行业的实际应用案例说明精度对比的重要性;最后得出结论并展望检测机精度未来的发展趋势。
上一页 1 2 3
...
下一页
文章

机器视觉在制造业缺陷检测的应用用

浏览数:116 

机器视觉在制造业缺陷检测的应用


机器视觉是通过计算机来模拟人类视觉功能,以让机器获得相关视觉信息和加以理解。可分为“视”和“觉”两部分原理,“视”是将外界信息通过成像来显示成数字信号反馈给计算机,需要依靠一整套的硬件解决方案,包括光源、相机、图像采集卡、视觉传感器等;“觉”则是计算机对数字信号进行处理和分析,主要是软件算法。
   机器视觉在工业上应用领域广阔,核心功能包括:测量、检测、识别、定位等。产业链可以分为上游部件级市场、中游系统集成/整机装备市场和下游应用市场。机器视觉上游有光源、镜头、工业相机、图像采集卡、图像处理软件等软硬件提供商,中游有集成和整机设备提供商,行业下游应用较广,主要下游市场包括电子制造行业、汽车、印刷包装、烟草、农业、医药、纺织和交通等领域。
   机器视觉全球市场主要分布在北美、欧洲、日本、中国等地区,根据统计数据,2014年,全球机器视觉系统及部件市场规模是 36.7 亿美元,2015年全球机器视觉系统及部件市场规模是42亿美元,2016年全球机器视觉系统及部件市场规模是62亿美元,2002-2016年市场年均复合增长率为12%左右。而机器视觉系统集成,根据北美市场数据估算,大约是视觉系统及部件市场的6倍。
   中国机器视觉起步于80年代的技术引进,随着98年半导体工厂的整线引进,也带入机器视觉系统,06年以前国内机器视觉产品主要集中在外资制造企业,规模都较小,06年开始,工业机器视觉应用的客户群开始扩大到印刷、食品等检测领域,2011年市场开始高速增长,随着人工成本的增加和制造业的升级需求,加上计算机视觉技术的快速发展,越来越多机器视觉方案渗透到各领域,到2016年我国机器视觉市场规模已达近70亿元。

   机器视觉中,缺陷检测功能,是机器视觉应用得最多的功能之一,主要检测产品表面的各种信息。在现代工业自动化生产中,连续大批量生产中每个制程都有一定的次品率,单独看虽然比率很小,但相乘后却成为企业难以提高良率的瓶颈,并且在经过完整制程后再剔除次品成本会高很多(例如,如果锡膏印刷工序存在定位偏差,且该问题直到芯片贴装后的在线测试才被发现,那么返修的成本将会是原成本的100倍以上),因此及时检测及次品剔除对质量控制和成本控制是非常重要的,也是制造业进一步升级的重要基石。
1、在检测行业,与人类视觉相比,机器视觉 优势明显
   1)精确度高:人类视觉是64灰度级,且对微小目标分辨力弱;机器视觉可显著提高灰度级,同时可观测微米级的目标;
   2)速度快:人类是无法看清快速运动的目标的,机器快门时间则可达微秒级别;
   3)稳定性高:机器视觉解决了人类一个非常严重的问题,不稳定,人工目检是劳动非常枯燥和辛苦的行业,无论你设计怎样的奖惩制度,都会发生比较高的漏检率。但是机器视觉检测设备则没有疲劳问题,没有情绪波动,只要是你在算法中写好的东西,每一次都会认真执行。在质控中大大提升效果可控性。
   4)信息的集成与留存:机器视觉获得的信息量是全面且可追溯的,相关信息可以很方便的集成和留存。
2、机器视觉技术近年发展迅速
   1)图像采集技术发展迅猛
   CCD、CMOS等固件越来越成熟,图像敏感器件尺寸不断缩小,像元数量和数据率不断提高,分辨率和帧率的提升速度可以说日新月异,产品系列也越来越丰富,在增益、快门和信噪比等参数上不断优化,通过核心测试指标(MTF、畸变、信噪比、光源亮度、均匀性、色温、系统成像能力综合评估等)来对光源、镜头和相机进行综合选择,使得很多以前成像上的难点问题得以不断突破。
   2)图像处理和模式识别发展迅速
   图像处理上,随着图像高精度的边缘信息的提取,很多原本混合在背景噪声中难以直接检测的低对比度瑕疵开始得到分辨。
   模式识别上,本身可以看作一个标记过程,在一定量度或观测的基础上,把待识模式划分到各自的模式中去。图像识别中运用得较多的主要是决策理论和结构方法。决策理论方法的基础是决策函数,利用它对模式向量进行分类识别,是以定时描述(如统计纹理)为基础的;结构方法的核心是将物体分解成了模式或模式基元,而不同的物体结构有不同的基元串(或称字符串),通过对未知物体利用给定的模式基元求出编码边界,得到字符串,再根据字符串判断它的属类。在特征生成上,很多新算法不断出现,包括基于小波、小波包、分形的特征,以及独二分量分析;还有关子支持向量机,变形模板匹配,线性以及非线性分类器的设计等都在不断延展。
   3)深度学习带来的突破
   传统的机器学习在特征提取上主要依靠人来分析和建立逻辑,而深度学习则通过多层感知机模拟大脑工作,构建深度神经网络(如卷积神经网络等)来学习简单特征、建立复杂特征、学习映射并输出,训练过程中所有层级都会被不断优化。在具体的应用上,例如自动ROI区域分割;标点定位(通过防真视觉可灵活检测未知瑕疵);从重噪声图像重检测无法描述或量化的瑕疵如橘皮瑕疵;分辨玻璃盖板检测中的真假瑕疵等。随着越来越多的基于深度学习的机器视觉软件推向市场(包括瑞士的vidi,韩国的SUALAB,香港的应科院等),深度学习给机器视觉的赋能会越来越明显。
   4)3d视觉的发展
   3D视觉还处于起步阶段,许多应用程序都在使用3D表面重构,包括导航、工业检测、逆向工程、测绘、物体识别、测量与分级等,但精度问题限制了3D视觉在很多场景的应用,目前工程上**铺开的应用是物流里的标准件体积测量,相信未来这块潜力巨大。
3、要全免替代人工目检,机器视觉还有诸多难点有待攻破:
   1)光源与成像:机器视觉中优质的成像是**步,由于不同材料物体表面反光、折射等问题都会影响被测物体特征的提取,因此光源与成像可以说是机器视觉检测要攻克的**个难关。比如现在玻璃、反光表面的划痕检测等,很多时候问题都卡在不同缺陷的集成成像上。

在线客服

在线客服

智能装备  自动化 激光 视觉检测  非标自动化  传感器  读码器

 联系方式
客服热线:15920023986
邮箱:547374133@qq.com
联系我们
  • 1
    海洲自动化设备.机器视觉检测.激光自动化设备

      深圳海洲智能

   地址:  深圳市宝安区航城大道华丰机器人产业园708号

   电话:    0755- 27908031    15920023986 (微信)

   简介:   专业自动化设备开发制造;机器视觉检测系统、视觉机器人


西安市海洲智能设备有限公司(办事处)

   地址:陕西省西安市雁塔区丈八一路1号汇鑫大厦A座

   电话: 15920023986 (微信)



海洲智能更多产品详情咨询:15920023986   VX  乔先生